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About this book 

When the Controller Area Network (CAN) was designed, security was not a re-

quirement. The primary usage of CAN was considered closed; possible intruders 

or attackers would simply not get physical or remote access to the network. How-

ever, today it is more and more common that devices connected to a CAN system 

also have connections to other networks, including the Internet. Recent car hacks 

have shown that attackers may get access to CAN systems. Without strong securi-

ty features, an attacker automatically gains full access to everything connected, 

allowing active control commands to be recorded and replayed. 

In this book we examine which options developers of CAN based systems realisti-

cally can use to provide adequate security features.  

What can we do… 

• without introducing heavy-weight security protocols? 

• to detect possibly injected messages? 

• without any hardware change?  

• with minimal software change and integration effort? 

We introduce the open CANcrypt protocol and software interface, which provides 

a scalable and customizable CAN security system. Depending on the application 

requirements and resources available in the individual devices, various protection 

levels can be realized.  
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1  Introduction 

The CAN (Controller Area Network) is a 30-year-old communication technology 

that worked well for much of its history without any security features. So what 

changed that now some 30 years later we need to review the network’s security 

features? 

The original use case for CAN systems was that of a closed network. The network 

would be deeply embedded in machinery without any connection to other net-

works or the Internet. In this case, any hacker attack would only be a physical 

attack – to get access to the CAN subsystem, a hacker would need physical access 

to the machine. 

However, today the CAN subsystem is no longer self-contained. More and more 

often, bridges and gateways to other networking technologies are added, includ-

ing connections to devices that have access to the Internet. Some examples of 

these devices are remote access devices for diagnostics or maintenance and mul-

timedia servers like those in use in some automotive applications. 

When we add devices that implement a gateway to the Internet or offer wire-

less communication options like Bluetooth and Wi-Fi, we also open a door for 

possible attacks to the CAN network.  

Once a possible intruder is past the firewalls that limit access, there are typically 

no further hurdles as all communication is unprotected and in the case of CANo-

pen or J1939, even well documented. 
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1.2  Prerequisites 

You should have a reasonably good understanding of how the Controller Area 

Network works before continuing reading. If you are unsure, we suggest reading 

(CiA 301, V4.2 2007) or one of the many online “Controller Area Network Primer” 

documents like  

www.computer-solutions.co.uk/download/Peak/CAN-Tutorial.pdf 

Embedded Systems programming knowledge is required as soon as you want to 

start implementing CANcrypt on microcontrollers. In this book you will find pseu-

do code as well as a description of the C functions that make up the user interface 

of CANcrypt. 

1.3  What is at risk? 

Some might ask what the specific security risk is. Here the popularity of CAN 

comes into play. These days almost everything with wheels uses CAN (including 

electric bikes). Maritime and avionic use is also common. You can find CAN in 

elevators, medical equipment (including surgery robots), and many industrial 

control processes. Various “car hacks” have been made public, including odome-

ter manipulation and unlocking doors but also active control of steering and 

brakes. 

CAN is also a popular communication channel for software updates. Often new 

software can be loaded into components of a system via a CAN channel. This 

ability is a hacker’s dream come true – being able to load software into a device 

with an embedded system that otherwise would not be accessible. 

If these systems can be hacked, and hackers can both read and actively send 

commands/control, then we have to ask ourselves: 

• How many hackable vehicles, ships and planes are out there? 

• How many hackable elevators are out there? 

• How many hackable medical devices are there? 

• Is it possible to manipulate any of the above in a way that someone gets 
harmed and it is only recognized as “technical malfunction”? 

Today some of these questions might still sound like the topic for a Hollywood 

blockbuster. However, it makes one wonder how Edward Snowden would evalu-

ate the likeliness of such scenarios. Maybe it has already been done and just not 

published… 

http://www.computer-solutions.co.uk/download/Peak/CAN-Tutorial.pdf
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1.4  Usage with I2C, RS-485 and others 

Many of the methods introduced in 

this book can also be applied to 

other lightweight embedded net-

working technologies. However, 

one of the central elements of 

CANcrypt is the bit-generation 

cycle. Here two nodes can gener-

ate or exchange a bit without other 

nodes being able to detect which 

bit was generated or exchanged. For this method to work, a shared transmission 

medium is required (not dedicated transmit and receive lines). The shared medi-

um could be a single shared wire or pair of wires, as in RS-485, or the I2C data line 

in multi-master mode. 

If we see enough requests, we will adapt CANcrypt to other suitable communica-

tion technologies in the future. 

1.5  Definitions and Terminology 

Cancrypt uses data types as defined in CANopen. Here are some of the common 

terms used: 

address, device 

Each device has a unique address. This is comparable to the node ID in some net-

work technologies. CANcrypt supports up to 14 devices using the addresses 1 to 

14. 

bit-generation cycle (or bit claiming) 

Two nodes can exchange a bit without others on the network being able to detect 

the bit value. This process, which requires multiple messages, is the bit-

generation cycle. 

CAN message ID 

Each message has a unique identifier called the CAN message ID, typically 11 bits, 

sometimes 29 bits (referred to as an extended identifier). 



 

 

4 CANcrypt 

configurator, CANcrypt configurator 

The configurator actively configures individual devices for functions such as key 

generation, assignment, storage, and erase. The configurator is not required dur-

ing regular operation and has the CANcrypt address 15. 

device, CANcrypt device 

A system may have up to 14 devices capable of processing CANcrypt messages. 

error counter 

Each device or configurator maintains an internal error counter. The count is in-

cremented with every suspicious system behavior, including errors. If the error 

counter reaches a specified value, secure communication is halted. 

grouped, grouping 

Every active device is in a group where all devices share a common dynamic key 

and communicate with each other securely. Messages are authenticated and 

optionally encrypted and decrypted based on the group key. 

index, to data object 

All parameters are addressable using an index and sub-index value. This address-

ing method is adapted from CANopen and other networking technologies. 

INTEGERxx, data type 

INTEGERxx is the notation for a signed integer value where “xx” indicates the 

number of bits used by the data type. CANcrypt uses “little endian” notation. 

key, dynamic 

A dynamic key is the base for all cryptographic functions. This key gets updated 

frequently and synchronously by all active devices. 

key, hierarchy 

Implementing of a key hierarchy is recommended to enable a device to have mul-

tiple keys with different levels of authority. For example, a manufacturer key 

might give access to a bootloader, while a system builder key might give access to 

system configurations. 
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key, management 

As soon as keys get permanently stored in devices, key management is required 

to determine when each key is generated and by whom. CANcrypt supports mul-

tiple models of key management. 

key, permanent 

At least one key must be permanently stored in each device. If a device supports 

storing multiple keys in a hierarchy, the term permanent key refers to the stored 

key that is currently in use. 

message, secure 

CANcrypt transmits each secure message paired with a preamble message that 

announces the secure message that follows. The secure message contains all of 

the data in the original (unsecure) message, possibly encrypted. 

message table 

The message table is shared by all active devices. It lists all CAN messages that 

require security handling. A device that receives a CAN message listed in this table 

may pass the message to the application only if the message was received with 

the matching preamble and signature. For details see section Error! Reference 

source not found.Error! Reference source not found.. 

one-time pad, pseudo 

For all encryptions and authentications a pseudo one-time pad is used. This one-

time pad is available to all grouped or paired devices so that it can be used like a 

synchronous key. 

paired, pairing 

Two active devices may get paired to have an individual secure communication 

channel. Messages are authenticated and optionally encrypted and decrypted 

based on the pairing key. 

preamble 

The preamble is a CAN message that announces the secure message that follows. 

The preamble contains control data as well as a signature that covers the control 

data and the secure message. 
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STRING4, data type 

STRING4 is the notation for a string segment containing four ASCII characters. The 

string is zero-terminated. All unused bytes of this string are set to zero. 

sub-index, to data object 

All CANcrypt parameters are addressable via index and sub-index values. This 

method to address data is adapted from CANopen and other networking technol-

ogies. 

UNSIGNEDxx, data type 

UNSIGNEDxx is the notation for an unsigned integer value where “xx” indicates 

the number of bits used by the data type. CANcrypt uses “little endian” notation. 
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2  Selecting cryptographic methods 

Many CAN devices are based on microcontrollers with limited memory and pro-

cessing power. Yet at the highest supported speed of 1 Mbps, the CAN message 

rate can be as high as 10,000 messages per second. At this rate, adding reasona-

bly safe security software to existing devices may be a challenge. 

As in most security systems, there is a tradeoff between how much security we 

need vs. how much we can afford in terms of resources that we can spare. 

2.1  Choosing cipher algorithms 

Until recently, even the smallest, lightweight ciphers like Blowfish still required 

minimal block or key sizes of 128 bits and a substantial number of processor cy-

cles to execute. Since the introduction of the Speck lightweight cipher block sizes 

down to 32 bits are possible and the algorithms are well suited to be handled by 

limited performance microcontrollers. By itself, all of these security algorithms do 

not protect from a simple monitor, record, and replay attack. 

Note that even the simplest cipher algorithm like a single exclusive OR (XOR) is 

considered unbreakable (literally safer than anything commonly used today) if the 

key is as big as the data and only used once. This is referred to as the one-time 

pad cipher.  

So for a 32-bit value transferred, if we use a single one-time 32-bit key combined 

with a single XOR, we already have an encryption stronger than any other cryp-

tography method in use today. 
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To a certain extent (depending on how much communication overhead is used 

and how often), the CANcrypt system introduced in this book allows providing 

such an individual key. However, “the best protection available” is hardly required 

for CAN communication. So even if the same or just a slightly different key is used 

a few times, the protection would still be adequate. 

A general rule for many security systems is that the more often you use a key, the 

more data a possible attacker has available to analyze what is happening. If keys 

are only temporary and never used again, the attacker has little to work with. 

The configurable CANcrypt system uses the following security features: 

• Configurable and customizable algorithms for 
o Generation and update of one-time pad 
o One-time pad generation based on Speck or AES-128 

(Advanced Encryption Standard) 
o Checksum / hash calculation for authentication 
o Encryption and decryption 

• Secure message size is 128 bits (two CAN messages) 
o Supporting 128-bit based algorithms such as AES-128  

• All keys are synchronous and shared among two or multiple communica-
tion partners 

o Current key used is the dynamic key, which changes after every 
use (used to generate pseudo one-time pad). 

o Permanent keys (hard coded or stored in non-volatile memory) 
are used for initialization of the dynamic key 

o Support of a key hierarchy (manufacturer, integrator, owner) 

2.2  Elementary function: bit generation 

The elementary functionality that CANcrypt provides is the generation of a bit 

that is known to two communication partners but not visible to anyone else. This 

can be a random bit, or one of the communication partners can enforce a bit. Two 

devices can use the bit to secretly exchange (or generate) a key. As this operation 

can occur at any time during operation, keys can become dynamic: new bits are 

introduced or added to the shared key continuously during the operation. 

With this base functionality, we can pair two devices, and if the main shared key is 

continuously updated, the encryption, decryption, and authentication algorithms 

may be minimal. If the key changes randomly, an attacker that has no access to 

the bit generation will barely have any data to work with. 
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In summary, for CANcrypt the focus is not on the cipher algorithm but on the key. 

In the default dynamic key mode, a 64-bit key (to cover the longest possible se-

cure data block of eight bytes) is used. The key is modified after every use. The 

CANcrypt configuration determines how often new random bits are introduced 

into this key modification. 

2.2.1  The bit-generation cycle 

When monitoring CAN communications on the message level, one cannot deter-

mine the device that sent an individual message because any device may transmit 

any message. As an example, let us allow two devices (named dominant device 

and recessive device) to transmit messages with the CAN IDs 0010h and 0011h 

and data length zero. The bits transmit within a “bit select time window” that 

starts with a trigger message and has a configurable length, for example 25 ms. 

Each node must randomly send one of the two messages at a random time within 

the time window. 

At the end of the bit select time window, a trace recording of the CAN messages 

exchanged will show one of the following scenarios: 

1. One or two messages of CAN ID 0010h 

2. One each of CAN ID 0010h and 0011h 

3. One or two messages of CAN ID 0011h 

Note that if two identical messages collide, they’ll be visible just once on the net-

work. If 0010h and 0011h collide, 0010h is transmitted first followed by 0011h 

(basic CAN arbitration). 

Let us have a closer look at case 2 – one each. If the messages are transmitted 

randomly within the bit response time window, an observer has no clue as to 

which device sent which message. However, the devices themselves know it! Now 

a simple “if” statement can determine the random bit for both participants: 

IF I am the configurator device 
  IF I transmitted 0010h and also saw a 0011h 
     common bit is 0 
  ELSE IF I transmitted 0011h and also saw 0010h 
     common bit is 1 
  ELSE 
     both used same message, no bit determined 
ELSE I am a device 
  IF I transmitted 0010h and also saw a 0011h 
     common bit is 1 
  ELSE IF I transmitted 0011h and also saw 0010h 
     common bit is 0 
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  ELSE 
     both used same message, no bit determined 

 

 

THE BIT-GENERATION CYCLE 

Unfortunately we cannot use case 1 and 3, so if those happen, both nodes need 

to recognize it and retry – try again in the next bit select time window. 

To prevent an observer from identifying individual device delays, each device 

should choose two good random values for each cycle. The devices should ran-

domly pick one of the two messages (0010h or 0011h) and randomly select a 

delay from 0 to 2/3 of the bit select time window. 

Higher-performance variations 

A variation of this scheme is to not use a random delay but instead ensure that 

both devices directly transmit their message after the trigger message. Then both 

messages arbitrate the bus at the same time. In a trace recording, we will always 

see 0010h followed by 0011h. This scheme requires very fast reactions from the 

two microcontrollers using the method. From the CAN receive interrupt to the 
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next transmit trigger, there are only a few bit times (inter frame space, seven 

bits), so at 1 Mbps this is just a few microseconds. 

In order to minimize the chance that both devices select the same bit generation 

message, a variation of the scheme can use 16 or more different CAN IDs for the 

bit generation message. Here each device randomly selects one of the 16 mes-

sages for the bit generation. Statistically the chance that both devices select the 

same message is now reduced from 50% to 6%. The average duration of the com-

plete bit-generation cycle thus shrinks drastically. The bit generation algorithm 

changes slightly to: 

IF I am the configurator device 
  IF I transmitted lower bit generation message 
     common bit is 0 
  ELSE IF I transmitted higher bit generation message 
     common bit is 1 
  ELSE 
     both used same message, no bit determined 
ELSE I am a device 
  IF I transmitted lower bit generation message 
     common bit is 1 
  ELSE IF I transmitted higher bit generation message 
     common bit is 0 
  ELSE 
     both used same message, no bit determined 

 

2.2.2  Protection level achieved 

At the logical (message) level, a bit generated or exchanged is invisible to the 

other communication partner. If all you can see is the CAN messages exchanged, 

then by monitoring CAN messages, you will not be able to determine the bit ex-

changed or generated. 

However, an attacker who has full physical access on a signal level (oscilloscope) 

or on the transceiver level (connection to the microcontroller) can see which node 

sends which bit-select message. Nevertheless, this access only provides partial 

information. In CANcrypt, configurable factors, including the stored permanent 

key, determine how a bit is finally generated or selected. 

A note in regard to random bit generation: As usual when it comes to random-

ness, both communication partners require a reasonably good random generator 

with an appropriate seed value. (If the initial seed is predictable, so is the ran-

domness.) 
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2.3  Keys: generation, hierarchy and management 

Each device should support multiple keys. For example, a device manufacturer 

might want to use a key to protect the bootloader so that only authorized and 

encrypted code will be loaded. 

A system integrator who puts devices from multiple manufacturers into a CAN 

system should also be able to generate and save keys. These keys would pair the 

installed devices (potentially from different manufacturers) and not allow new 

devices to be introduced without authorization by the system integrator.  

Last but not least, on the user level, it might be desirable to generate temporary 

keys for plug-and-play devices. A user might have authorized a particular plug-

and-play device but does not want to allow additional devices or replacements 

without authorization. 

2.3.1  Key storage in the devices 

In the participating devices, permanent keys or the last session key need to be 

stored in non-volatile memory. Depending on the device and how it implements 

the storage, an intruder might try to get access to this non-volatile memory to get 

access to the keys.  

To illustrate the vulnerability, imagine the device is Linux based and has a file 

system. Storing the plain keys using the file system would be simple but also an 

easy target. If the device also has Internet access and ever gets hacked, reading 

the keys from the file system becomes easy. 

A device that does not use an operating system is more difficult to hack. But at-

tackers have shown that they can load their own code if a built-in bootloader is 

not well protected. If the keys are just stored in a connected EEPROM, an intruder 

might be able to read the key. 

We should make it reasonably difficult for an intruder who hacked a device to get 

access to the stored keys. These are some precautions we can take: 

• the key storage location should not be obvious 
o if a file system is used, do not name file “keys” 
o if EEPROM is used, do not store keys at the beginning or end 
o offsets/filenames to the keys should not be constants; generate 

the keys dynamically as part of your initialization code 
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• hide the key with random data 
o if you can spare the memory, place the key within a bigger ran-

dom data block 

• encrypt the keys saved 
o do not store the keys as a copy;  

instead use some minimal encryption method on them 

These methods do not add 100% security but raise the difficulty level for potential 

intruders to get easy access to the stored keys. 

2.3.2  Key storage outside of the CAN system 

Each time a key is generated, we need to ask ourselves if the key also needs to be 

stored outside the system. Potentially this creates the need to maintain a data-

base with all keys ever generated. And that makes a very interesting target for 

attackers. If this option is chosen, the key copies stored need to be well protected 

by other security means. 

Use of security “dongles” 

One option for increased security could be that such keys are not stored on any 

PC, but only in hand-held security devices or “dongles”. Only if you have physical 

access to one of these dongles can you make changes to the security settings of a 

device or system. Dongles can be based on existing CAN/CANopen handheld diag-

nostic tools such as CANopen Diag. A cloning function allows creating backups or 

copies of a dongle. The drawback is that now all keys (or a group of keys) is in one 

physical device, but on the plus side the keys are never stored anywhere on the 

Internet. 
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3  CANcrypt functionality 

The first proof-of-concept implementations of CANcrypt were done on multiple 

NXP LPC17xx devices and a PC with a PEAK PCAN driver interface. Demo code is 

available for download at www.esacademy.com/cancrypt. 

3.1  Summary 

With CANcrypt, we offer a framework to handle both authentication and encryp-

tion of CAN messages. As there is some message overhead, the CANcrypt security 

features should be used only by a limited number of devices (the current version 

supports up to 15 devices) and only for selected messages (selected by CAN mes-

sage ID). Depending on the chosen security level, encryption may be used not 

only on entire messages but also on selected bytes.  

Security features are based on shared symmetric keys. There is a group key for all 

devices participating in the secure communication and a pairing key for secure 

channels between two devices. The secure pairing channel has a higher security 

level for use in system configuration or especially sensitive point-to-point connec-

tions such as bootloader communication. 

3.1.1  Pairing 

The CANcrypt pairing mode connects a CANcrypt configurator with a CANcrypt 

device and provides a secure communication channel supporting both authentica-

tion and encryption. 
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Secure messages are transmitted in pairs, first a preamble message that contains 

security configuration details and a signature followed by the message with the 

data. 

The dynamic pairing key used between paired devices is continuously updated by 

introducing new bits generated as described in section (2.2.1 “The bit-generation 

cycle”). The update frequency is configurable. 

 

SECURE CHANNELS IN A CAN SYSTEM 

3.1.2  Grouping 

The CANcrypt grouping mode establishes a group of secure devices. In this mode, 

every device produces a secure heartbeat. The dynamic grouping key is updated 

based on random values in the heartbeats. No other messages use security fea-

tures. 

All grouped devices monitor the network for manipulations (injections, collisions 

in the data field) and stop producing the secure heartbeat on detecting such a 

manipulation. 

Receiving a secure heartbeat indicates that all previous messages from the trans-

mitting device are authentic – otherwise the device would not have produced the 

secure heartbeat. 
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Note: due to application specific delays in drivers and buffers it might be neces-

sary to wait for two following secure heartbeats before considering a message 

authenticated. 

  

 

AUTHENTICATED GROUPING IN A CAN SYSTEM 

3.2  Basic functionality 

In this section, we outline the basic functionality provided by CANcrypt. This in-

cludes generation and updates of keys, generation of the one-time pad, and the 

generation and evaluation of the secure message pair. 

3.2.1  Key management and key hierarchy 

Security systems require keys. Security keys require management. Who keeps a 

copy of which key where? Does a manufacturer need to keep a copy of each indi-

vidual key of every product ever produced?  Which keys does a system builder or 

integrator need access to? 

To support multiple keys at different security levels (for example for the manufac-

turer, system integrator, and owner of a system), CANcrypt implements a key 

hierarchy of up to six keys. Each of these keys has a key ID, and the higher the 

value for a key ID, the higher the security level. 
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Keys can never be read from a CANcrypt device. They can only be erased or newly 

generated. To erase a key, a configurator must establish a direct secure connec-

tion (active pairing) to a single device based on one of the stored keys. Once the 

devices are paired, the configurator can erase keys of the same or lower hierarchy 

level only. 

In summary: once a key is generated and saved, it can only be erased and re-

generated if paired based on a key of the same or higher security level. 

 

KEY SELECTION FROM KEY HIERARCHY 

The pairing process requires one permanent key and may also involve an optional 

serial number as illustrated in the figure above, “Key selection from key hierar-

chy”. This method allows a manufacturer to use the same base key in multiple 

devices. As pairing (establishing a secure channel) may also involve the serial 

number, a service or maintenance login could still be device specific. 

3.2.2  Updating the shared dynamic keys 

The dynamic key gets continuously updated following a fixed time scheme. De-

pending on the configuration, typical update cycle times are 500 ms, 1 s, or 2 s. 
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For a single pair of devices, a single new bit is generated randomly, imitated by 

the configurator.  With multiple devices, the secure heartbeat is used to introduce 

new random values to by all participants. 

 

DYNAMIC KEY GENERATION WITH SHARED RANDOM NUMBERS 

As part of the secure heartbeat, all participating (grouped) devices exchange en-

crypted random numbers. These shared random numbers are used to generate a 

new synchronized shared key as illustrated in the figure above. Up to 15 devices 

can actively participate in this mechanism. 

This dynamic key is re-generated with every secure heartbeat cycle. 

In paired mode (only two devices involved), the random-bit-generation cycle is 

used to introduce new bits to the shared dynamic key. 
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                          ADDING A NEW BIT TO THE DYNAMIC KEY 

The new bit or bits get shifted into the dynamic key (shift right). This is done in 

parallel by both paired devices as illustrated in the figure above, “Adding a new 

bit to the dynamic key”.  The figure below, “New bit is shifted in”, shows the new 

dynamic key now used by the devices. This updated key is now used for future 

pseudo one-time pad generations until a new bit gets introduced. 

 

NEW BIT IS SHIFTED IN 

Synchronization challenge 

Even if the key update is executed by all CANcrypt devices in parallel, a secure 

message might still be received using the previous key. Therefore all devices must 
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keep a copy of the previous dynamic key to decrypt and authorize messages that 

still use the previous key until the key update has been executed by all nodes. 

3.2.3  One-time pad generation 

Besides the shared dynamic key, devices also share the permanent key and a 

message counter (not secret) as illustrated in the figure below, “Shared parame-

ters for pseudo one-time pad generation”. The message counter is part of every 

secure message pair and is transmitted with the preamble message. 

The dynamic one-time pad is regenerated with each transmit or receive of a se-

cured message. The value is based on the current dynamic key, but the bits are 

rotated and mixed depending on a combination of the current transmit message 

counter and the permanent key. This method ensures that the dynamic one-time 

pad’s bits experience a significant change between each use. Each device needs to 

maintain two message counters, one for transmit and one for receive, to be able 

to create the corresponding dynamic one-time pad. 
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SHARED PARAMETERS FOR PSEUDO ONE-TIME PAD GENERATION 

In an advanced custom version of CANcrypt additional inputs can be used for the 

generation of the one-time pad. This can involve decrypted data from previously 

received messages, for example from the secure heartbeats. Instead of light-

weight Speck bit mixup function, the more advanced AES-128 or AES-256 algo-

rithm can be used to create the one-time pad. 

 

ADVANCED ONE-TIME PAD GENERATION 
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3.2.4  Generating an initializer for the CANcrypt checksum 

CANcrypt uses checksums for the secure message table (containing configuration 

data), the secure heartbeat and secure messages. The checksum for the message 

table is calculated with an initializer of FFFFh. 

As the other checksums only cover a limited number of bytes, they must not use a 

simple initializer like zero or FFFFh. The default CANcrypt configuration is that the 

initializer for these checksums is taken from a combination of the permanent key 

and the dynamic one-time pad. This ensures that the initializer varies from mes-

sage to message. 

For advanced use, the function generating the initializer can be customized, or a 

completely different scheme like a security hash function or a safety protocol 

usable checksum may be implemented. 

 

GENERATION OF CANCRYPT CHECKSUM INITIALIZER 
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3.2.5  Transmitting the CANcrypt Secure Heartbeat 

The secure heartbeat consists of five bytes. The first byte is the heartbeat status 

byte indicating if the device is actively paired and the communication is still au-

thenticated. The following three bytes are random numbers. The last byte is a 

checksum of the status byte and the three random bytes. 

Before transmitting, the last four bytes (random number and checksum) are en-

crypted based on the current dynamic key. 

 

SECURE HEARTBEAT GENERATION 

The timing for the secure heartbeat is controlled by the detection of other secure 

heartbeats and an event and an inhibit time as defined in CANopen.  

On receiving a secure heartbeat, a CANcrypt device participates in the heartbeat 

cycle by transmitting its own secure heartbeat and resetting its internal timer. Any 

device detecting an expiration of the event time starts the next secure heartbeat 

cycle by transmitting its own secure heartbeat. 

Any device may start the next heartbeat cycle earlier. For example, a device might 

want to have a received message authenticated as fast as possible. However, the 
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device must wait until the inhibit time has passed before initiating a new cycle. 

This delay ensures that the CAN bus is not flooded with heartbeat cycles. 

3.2.6  Receiving a CANcrypt Secure Heartbeat 

On receiving a secure heartbeat, a device first decrypts the last four bytes based 

on the current shared dynamic key. Then the device calculates the checksum of 

the status byte and the random bytes. If the calculated checksum matches the 

transmitted checksum, the heartbeat is considered authenticated. 

 

SECURE HEARTBEAT VERIFICATION 

On  receiving a secure heartbeat, a device determines if the local inhibit time has 

expired – if the time since the last transmission is greater than the inhibit time. If 

so, the device transmits its own next secure heartbeat. 
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3.2.7  Transmitting a secured message 

The secure transmit handler checks if a message to be transmitted is in the global 

configuration list for secure messages.  

 

GENERATING THE PREAMBLE 

If the message to be transmitted is in the list of secure messages, a preamble 

message is generated. The message contains control bytes including the CAN 

message ID to follow and the current transmit message counter.  

Then the 16-bit signature is generated by calculating a checksum and encrypting it 

(the method is configurable; the default is an exclusive OR). Encryption happens 

based on the dynamic pseudo one-time pad. 
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ENCRYPTING TRANSMIT DATA 

If encryption for the data is used, then the data bytes requiring it are encrypted 

(configurable, default is exclusive OR), also based on the pseudo one-time pad. 

Both messages are transmitted back-to-back on the CAN system.  
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3.2.8  Receiving a secured message 

On the receiving side, if a message is received that is listed in the secure message 

list, the preamble is received first and stored in a buffer. The reception starts a 10 

ms timeout. A preamble that is received without a message following within 10 

ms is considered an error, and a security error counter gets incremented. The 

included message sequence counter is checked. The counter contains information 

about the dynamic update cycle and can be used to determine if the current (lat-

est, newest) dynamic key or the previous one gets used. 

 

RECEIVING PREAMBLE AND SECURED MESSAGE 

Once the secured message is received, the local pseudo one-time pad is generat-

ed using the message sequence counter from the preamble. If parts of the mes-

sage are encrypted, they are now decrypted. 

Next, the signature needs to be verified. To do that, the checksum is rebuilt on 

the preamble controls and the message data. The signature received with the 

preamble is decrypted and the two are compared. If they match, the message is 

considered authenticated. 

A secure message received is passed on to the application or protocols above the 

CANcrypt handler only if authentication was successful. Otherwise the message 

does not get passed on and is “invisible” to a device. 
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AUTHENTICATION BY RECEIVER 

3.2.9  Multi message stream with epilog message 

There might be situations where larger data blocks are transmitted with back-to-

back messages. To optimize these transfers (by not requiring a preamble with 

every message), CANcrypt supports message sequence handling for up to eight 

messages. 

If the control/request byte in the preamble specifies that multiple messages are 

part of the sequence, the signature of the preamble is not used. Instead an epilog 

message is inserted at the end of the sequence. The format of the epilog is identi-

cal to the preamble and contains the signature for all messages transferred with 

the sequence. See section Error! Reference source not found.Error! Reference 

source not found. for details about the message stream. 

3.2.10  Transmitting an advanced secured message 

In advanced mode, the generation of a secure message can be based on AES-128 

encryption. As unused bytes are filled with random data, the total message size 

(consisting of the preamble and data message) is exactly 128 bits. The following 

figures illustrate the processes involved for encryption and decryption. 
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GENERATING THE PREAMBLE – AES-128 VERSION 

Unused bytes in the data message are filled with random values. The preamble 

and data message are each eight bytes.  

 

ENCRYPTING TRANSMIT DATA – AES-128 VERSION 

Then both the preamble and data message are AES-128 encrypted using the cur-

rent dynamic one-time pad. 
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4  CANcrypt attack vectors 

In this chapter we examine the remaining attack vectors of CANcrypt. 

4.1  Randomness 

Wherever random numbers are used, a typical attack vector is to assume that the 

numbers are not random and to determine a pattern. The random numbers used 

by the paired devices must be “reasonably good”, and they must differ with every 

power cycle. 

This might be a challenge for many microcontroller systems. The random func-

tions provided by C compilers are typically not good enough to ensure “random-

ness”. If these are used, it is important to update the random seed used by this 

function as often as possible. 

One possible option is to maintain and update a seed value that is constantly 

updated (using any arithmetic function) depending on inputs from A/D converters 

(especially highest resolution bits), high-resolution timers (measuring timestamps 

of CAN messages received). 

Latest microcontrollers more and more often have a dedicated random number 

generator. Where available, these should be used. 

4.2  Creation and storing of permanent keys 

The phase where keys are stored permanently is crucial. Even if an intruder can-

not see keys generated by the CANcrypt methods, a potential intruder present at 

this stage would be a security concern. So whenever initial pairing keys (no matter 
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if by the manufacturer or system integrator) are generated and stored, extra pre-

cautions should be taken to ensure that no intruder is present. 

The precautions can include verifying that only those devices that are physically 

connected to CAN are required for this process. 

Some microcontrollers offer dedicated memory locations for storage of security 

information. Where available, this area should be used to store the key(s) with 

the highest priority. 

If “regular” FLASH memory is used, ensure that the FLASH protection bits are set. 

Specific functionality of these depends on the manufacturer. Usually these can be 

configured in a way that only the code executed from the FLASH memory can 

read-access this memory. Where possible, protect the FLASH from being read 

from RAM and FLASH programming ports/interfaces. 

4.3  Debug and bootloader interfaces 

Microcontrollers with an enabled JTAG or SWD interface for debugging or an 

internal bootloader to reprogram the device can be very vulnerable to attacks. 

This is especially true when these accesses are also made available through other 

communication interfaces such as UART, USB, or even CAN. Using an appropriate 

debugger or programming tool, an intruder can manipulate memory contents and 

inject code. 

For highest security, all such interfaces should be internally disabled. Bootloaders 

should only be enabled if they offer their own security levels such as protection 

from unauthorized activation and supporting flashing only of authorized files. 

4.4  Read/write access to CAN system 

This section summarizes attacks where the intruder has full CAN level access and 

can receive all messages and inject messages at will. The access could be through 

a physically connected sniffer or a remote access device. 

In CAN networks, a typical attack involves recording messages and replaying 

them. If the messages exchanged after power up are always the same, an attacker 

could fake initial messages by replaying them. However, due to the dynamic, 

random key changes, a hacker would probably look at alternate methods first. 

Examples include trying to activate a boot loader or re-flashing a device with new 

code. 
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4.5  Ability to physically remove/replace devices 

With physical removal, an attacker has the ability to reprogram (re-flash) a con-

nected device. 

If one of the paired or grouped devices is removed and replaced with a tampered 

device, the tampered device can participate in the key generation or grouping 

cycles. However, all pairing and grouping functions also use elements of a perma-

nent key. With endless time and re-tries an attacker might be able to determine 

parts of the permanent key. To make this attack vector less attractive, CANcrypt 

uses incremental delays on pairing/grouping re-tries. 

4.6  Signal level access to CAN and PCBs 

The result that can be achieved with signal-level access heavily depends on many 

factors. With PCB access to a CAN transceiver, an attacker would be able to see 

the bit generation. If session pairing is used, the attacker can see all keys generat-

ed. If permanent pairing is used, an attacker would still be able to learn changes 

to the dynamic key over time and eventually have a copy of the dynamic key. 

Although this level of attack is theoretically possible, any active attack trying to 

manipulate or fake data would still be difficult as it would require hard, real-time 

reaction. 

Note that this attack option is not available if the paired devices use controllers 

with integrated transceivers such as some of the NXP LPC11Cxx devices. 

4.7  Summary 

At this point we are not aware of any “promising” attack vectors on the 

CAN/CANopen level in a CANCrypt system. That includes remote access (for ex-

ample through a hacked gateway) as well as direct access with a CAN sniffer utili-

ty. 


